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Abstract— This paper aims to build a probabilistic frame-
work for Howard’s policy iteration algorithm using the lan-
guage of forward-backward stochastic differential equa-
tions (FBSDEs). As opposed to conventional formulations
based on partial differential equations, our FBSDE-based
formulation can be easily implemented by optimizing crite-
ria over sample data, and is therefore less sensitive to the
state dimension. In particular, both on-policy and off-policy
evaluation methods are discussed by constructing different
FBSDEs. The backward-measurability-loss (BML) criterion
is then proposed for solving these equations. By choosing
specific weight functions in the proposed criterion, we can
recover the popular Deep BSDE method or the martingale
approach for BSDEs. The convergence results are estab-
lished under both ideal and practical conditions, depend-
ing on whether the optimization criteria are decreased to
zero. In the ideal case, we prove that the policy sequences
produced by proposed FBSDE-based algorithms and the
standard policy iteration have the same performance, and
thus have the same convergence rate. In the practical case,
the proposed algorithm is still proved to converge robustly
under mild assumptions on optimization errors.

Index Terms— forward-backward stochastic differential
equations, policy iteration, stochastic optimal control

I. INTRODUCTION

As an abstract description of policy-based methods, such
as policy iteration (PI) [1]–[6] and policy gradient methods
[7]–[9], the general policy iteration (GPI) for optimal control
problems works as follows.

1) (Initialization.) Given an initial policy α0 and set n← 0.
2) (GPI Subroutine.) Given a policy αn−1, find a new

policy αn in the policy space A.
3) Set n← n+ 1 and go back to step 2.

The key element of GPI is step 2, referred to as the GPI
subroutine in this paper, which takes the current policy αn−1
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as inputs, along with some other arguments if needed, and
returns a new policy αn. For example, in policy gradient
methods, the new policy is obtained via gradient descent in
the policy space. That subroutine is carefully designed such
that the generated policy sequence {αn} of GPI converges to,
or approaches in some sense, an optimal policy α∗.

Originally developed by Howard for the Markov process
model [1], Howard’s policy improvement procedure (an in-
stance of GPI subroutines), along with the policy iteration
method, has been widely applied to optimal control problems,
from disctete to continous, deterministic to stochastic and
linear to nonlinear systems [10]–[14]. A major advantage of
Howard’s policy iteration (hereafter referred to as the standard
PI) is its fast convergence rate. For discrete time and state
problems, Puterman and Brumelle [2] pointed out that the stan-
dard PI can be regarded as an instance of Newton’s method,
noting that both are finding zeros of a nonlinear operator.
Based on this crucial observation, they successfully established
a local quadratic convergence rate, which is also a standard
result for Newton’s iterative scheme in root finding problems.
For linear quadratic regulation (LQR) problems in continuous
time and state, the value function squence generated by the
standard policy iteration also converges quadratically [10].
Another interesting property of the standard PI is its robustness
against numerical errors. For stochastic nonlinear systems,
Kerimkulov et al. [15] analyzed the standard PI with perturba-
tion errors. They employed the theory of backward stochastic
differential equations (BSDEs) to estimate the performance
error bound; see also [16] for perturbation discussion on
continous-time LQR problem.

Howard’s policy improvement procedure is usually recog-
nized as two consecutive steps: policy evaluation and policy
improvement. The purpose of policy evaluation is to collect
quantitative information on the current policy, or more specif-
ically, the value function of the policy. Based on this informa-
tion, the policy improvement step constructs a new policy that
guarantees a monotone increase in performance. In this work,
we focus on policy evaluation, and assume that a minimizing
function for policy improvement exists and is accessible [4],
[15]. Most early methods of policy evaluation obtain value
functions by solving the differential Bellman equation, a first
or second order linear partial differential equation (PDE)
[10], [17], [18]. Since traditional finite difference methods for
PDEs generally suffer from the curse of dimensionality [19],
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integral PI [11] and temporal difference learning [20], [21] are
preferred in practice. In addition to aforementioned works that
focus on deterministic case, Jia and Zhou [22] investigated
policy evaluation in stochastic settings with a finite plan-
ning horizon. They extended temporal difference learning to
stochastic systems, and proposed a martingale approach which
can be viewed as the stochastic counterpart of integral PI. It is
worth noting that their martingale approach utilized a forward-
backward stochastic differential equation (FBSDE), which is
precisely the stochastic representation of the value function.
From this point of view, their work is closely related to early
policy evaluation methods utilizing PDEs, as Feynman-Kac’s
formula relates FBSDEs and PDEs [23]. On the other hand,
Han et al. [24] proposed Deep BSDE method as a numerical
approach for high-dimensional PDEs, where the problem is
transformed into an optimization problem subject to FBSDEs
by nonlinear Feynman-Kac’s formula.

Contributions. The main contributions of this paper are
as follows. 1) Motivated by these two parallel applications
of Feynman-Kac type formulae [22], [24], we rigorously
build the FBSDE-based framework of policy evaluation. In
particular, we propose two FBSDE-based GPI subroutines
are proposed that, under certain assumptions, are shown to
be equivalent to conventional PDE-based subroutine used in
Howard’s policy iteration. This in turn shows GPI equipped
with proposed subroutines converges as fast as the standard
PI. 2) We propose a novel optimization-based formulation
of policy evaluation, whereby value function gradients are
evaluated rather than the value function itself. In the case of
inexact policy evaluation, we present a robust convergence
result in terms of the optimization errors. 3) We propose
a versatile criterion for the optimization problem in policy
evaluation. As the solution to the FBSDE constraint is not
known a priori, we prove that it is equivalent to optimizing
the proposed backward-measurability-loss (BML) criterion.
By selecting different weight functions in the BML criterion,
we are able to recover the Deep BSDE method in [24] as well
as the martingale approach in [22]. Combining with the time
discretization scheme in [25], our method can also be used
to solving FBSDEs and Feynman-Kac type PDEs. See also
Figure 1 for an overview of our policy iteration framework.

Organizations. This paper is organized as follows. In Sec-
tion II, we set up the stochastic optimal control problem and
review the concept of value functions. In Section III, we state
the standard policy iteration algorithm and present a global
linear convergence result. Two FBSDE-based policy iteration
algorithms are introduced and analyzed in Section IV. In
addition to the ideal convergence results, a robust convergence
analysis is offered regarding optimization errors. Section V
dicusses the optimization problems in proposed algorithms.
Numerical examples are present in Section VI. Finally, we
conclude with some future directions in Section VII.

Notations. Notations to be used frequently are summarized
as follows. 1) About probability theory and stochastic analysis.
An element ξ ∈ L2

F is a F-measurable function with E ∥ξ∥2 <
∞. W t,T ≡ {W t,T

s : t ≤ s ≤ T} denotes a d-dimensional
Brownian motion starting at W t,T

t = 0. S2(t, T ) denotes the
set of adapted process Y satisfying E[supt≤s≤T |Ys|2] < ∞.

GPI Subroutineαnα0

αn+1

n = 0

n← n+ 1

General
Policy
Iteration

α′vα (for PDE-based), or
σ⊺∂xvα (for FBSDE-based)

α
Evaluation Improvement In GPI

Subroutines

α Optimization s.t.
FBSDEs

σ⊺∂xvα
Sample data

Minimize
BML criterion FBSDE-based

Evaluation

Fig. 1. Hierarchical illustration of the proposed policy iteration frame-
work. At the top level of the hierarchy is GPI, which iterates in the policy
space. At the midlevel is the GPI subroutine, and at the bottom is the
optimization formulation of policy evaluation.

H2(t, T ) denotes the set of adapted process Z satisfying
E
∫ T

t
∥Zs∥2 ds < ∞. When there is no ambiguity, we drop

the dependencies on t and T in these notations. 2) About
optimal control and reinforcement learning. We use x ∈ Rn

and a ∈ Rm to denote the state and the action (control). A
function α is termed a (feedback-control) policy if it maps
time-state pairs to control values. We use Fα to indicate that
a quantity F depends on a policy α and F ∗ to indicate the
quantity corresponding to the optimal policy. Moreover, for a
quantity F (t, x, a) depending on the time-state-action triple,
we write F a(·, ·) ≡ F (·, ·, a) and Fα(·, ·) ≡ F (·, ·, α(·, ·)) if
a is a control value and α is a control policy. 3) About vector
space. For elements in Euclidean space, ∥ · ∥ stands for the
L2 norm and ⟨·, ·⟩ stands for the standard inner product. 4)
About functional classes. We use w ∈ C1,2 to say that w is
continuously differentiable with respect to the first variable and
twice continuously differentiable with respect to the second
varaible. In Section III-A, we also introduce the notation
ϕ ∈ CUniLip

b to say that ϕ is uniformly Lipschitz continuous
and uniformly bounded.

II. PRELIMINARIES

In this section, we review some basic concepts and results in
general stochastic optimal control theory. For a comprehensive
description of this subject, please refer to the monograph [26].

A. Problem settings
We consider a optimal control problem with system dynam-

ics governed by the stochastic differential equation (SDE):

Xs = x+

∫ s

t

bα(τ,Xτ ) dτ +

∫ s

t

σ(τ,Xτ ) dWτ . (1)

The solution to this equation, denoted by Xα,t,x or simply Xα,
is a controlled diffusion process, depending on both the policy
α and the starting point (t, x). Let us fix the initial time-state
pair (t, x) at first. Eq. (1) is studied on an underlying proba-
bility space (Ω,F ,P), which is required to be complete and
admit a standard d-dimensional Brownian motion {Ws}t≤s≤T

with Wt = 0. Here, T <∞ is the planning horizon. We equip
(Ω,F ,P) with the natural filtration {Fs}t≤s≤T generated by
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{Ws}t≤s≤T . Note that the definition of {Ws,Fs; t ≤ s ≤ T}
relies on the choice of t ∈ [0, T ].1 We develop our theory
with fixed (t, x) and the generalization to varying (t, x) is
straightforward by substituting specific values.

The (controlled) drift coefficient bα and diffusion coeffi-
cient σ are measurable functions defined on [0, T ] × Rn.
In particular, bα is defined by another measurable functions
b : [0, T ]×Rn×Rm → Rn and a policy α : [0, T ]×Rn → Rm,
i.e., bα : (t, x) 7→ b(t, x, α(t, x)). Under certain conditions on
bα and σ, there exists an adapted process Xα,t,x satisfying
Eq. (1) P-a.s. for any s ∈ [t, T ]; see, for example, Karatzas
and Shreve [23]. Here, by saying a process is adapted, we
mean it is progressively measurable2.

The cost of a policy α starting at (t, x) is measured by the
following expectation:

vα(t, x) := E
[∫ T

t

fα(s,Xα,t,x
s ) ds+ g(Xα,t,x

T )

]
. (2)

Here, f : [0, T ] × Rn × Rm → R and g : Rn → R are
measurable functions, and fα is defined in terms of f and α,
in the same way as bα is defined in terms of b and α. A control
policy is said to be admissible if it takes value in A ⊂ Rm

and the solution to Eq. (1) uniquely exists. We denote by A
the collection of all admissible policies. When the policy α is
fixed, the function vα : [0, T ] × Rn → R is called the value
function of α. In addition, the following infimum:

v∗(t, x) := inf
α∈A

vα(t, x) (3)

is called the optimal value function.
The stochastic optimal control problem, in view of Eq. (1)–

(3), is then stated as finding α∗ ∈ A such that v∗(t, x) =
vα

∗
(t, x) for a given pair (t, x).

B. Characterizing value functions via PDEs

Using dynamic programming, we can link value functions
to a family of PDEs. Specifically, the dynamic programming
principle states that

v∗(t, x) = inf
α∈A

E
[∫ t+ϵ

t

fα(s,Xα,t,x
s ) ds+ v∗(t+ ϵ,Xα,t,x

t+ϵ )

]
.

(4)
Recall that for any sufficient smooth v, there is L αv(t, x) =
limϵ→0

1
ϵ E

[
v(t+ ϵ,Xα,t,x

t+ϵ )− v(t, x)
]

with L α the infinites-
imal generator the associate to Eq. (1)

L αv := ∂tv + ⟨bα, ∂xv⟩+
1

2
tr{σσ⊺∂xxv}. (5)

Here, we drop the dependency on (t, x) for simplicity. Divid-
ing Eq. (4) by ϵ and taking ϵ → 0 leads to a second order
partial differential equation. Setting t = T in the definition
(3) yields a boundary condition. Putting these all together and

1This is known as the weak formulation of stochastic optimal control
problems in [26]. The main motivation of this formulation is that we can
deal with a family of stochastic optimal control problems by varying (t, x).

2Strictly speaking, an adapted process need not to be progressively measur-
able. But, if it is also measurable, then it has a stochastic equivalent process
which is indeed progressively measurable [27].

varying (t, x) lead to the following second order nonlinear
Cauchy problem for the optimal value function{
0 = inf

a∈A
{L av∗(t, x) + fa(t, x)}, ∀(t, x) ∈ [0, T )× Rn,

v∗(T, x) = g(x), ∀x ∈ Rn,
(6)

which is exactly the Hamilton-Jacobi-Bellman (HJB) equation.
Following the similar arguments of Eq. (4)–(6) leads to the

following linear Cuachy problem for the value function{
0 = L αvα(t, x) + fα(t, x), ∀(t, x) ∈ [0, T )× Rn,

vα(T, x) = g(x), ∀x ∈ Rn,
(7)

where the infimum is absent because this value function might
be not optimal. We refer to this as the PDE characterization
of value functions.

C. Characterizing value functions via FBSDEs

As a result of Feynman-Kac’s formula, solutions to
PDEs (7) admit FBSDEs representation, and therefore it is
possible to characterized value functions with FBSDEs. To
see this, one may apply Itô’s rule to find that

dvα(s,Xα
s ) = L αvα(s,Xα

s ) ds+ ⟨σ⊺∂xvα(s,Xα
s ), dWs⟩.

Substituting Eq. (7) into this equality and combining Eq. (1)
yield the FBSDE characterization of vα

Xs = x+

∫ s

t

bα(τ,Xτ ) dτ +

∫ s

t

σ(τ,Xτ ) dWτ ,

Ys = g(XT ) +

∫ T

s

fα(τ,Xτ ) dτ −
∫ T

s

⟨Zτ , dWτ ⟩,

Ys = vα(s,Xs), ∀s ∈ [t, T ], dP-a.s.,
Zs = σ⊺∂xvα(s,Xs), ds⊗ dP-a.e. on [t, T ]× Ω

(8)

under some conditions ensuring the solution’s existence and
uniqueness. We shall point out that this FBSDE is not in the
most general form. In Eq. (8), the forward SDE does not
contain the backward part Y as well as the control part Z. This
means that the FBSDE is decoupled and we can separately
solve the forward SDE and the backward SDE.

The PDE characterization Eq. (7) and FBSDE character-
ization Eq. (8), along with HJB Eq. (6), are fundamental
motivations of this paper. However, in deriving these equa-
tions, we implicitly assume that v∗ and vα are sufficiently
smooth. This is nontrivial, especially for HJB Eq. (6), which
is strongly nonlinear. Nevertheless, we focus on problems such
that this assumption holds, as the nonsmooth solution to HJB
equation is already a broad topic, in which the concept of
viscosity solutions must be introduced [28]. Extensions to the
nonsmooth case might be considered in future works.

To conclude this section, we point out that the HJB Eq. (6)
characterizing the optimal value function is a nonlinear PDE,
while its reduced form Eq. (7), satisfied by the value function
of a given policy, is linear. From this point of view, the
standard PI manages to approximate the solution to a nonlinear
PDE with a sequence of solutions to linear PDEs. This
linearization coincides with the idea of Newton’s method for
finding zeros, regarding some abstract arguments of general
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derivatives. However, as discussed in the last section, solving
PDEs directly generally suffers the curse of dimensionality,
and thus prevents applications in large-scale problems. This is
the reason why we need the probabilistic formulation Eq. (8).

III. THE PDE-BASED POLICY ITERATION ALGORITHM

In this section, we reformulate the system dynamics, state
our assumptions, and present a global linear convergence result
of the standard policy iteration algorithm. At last, we highlight
two key issues with this PDE-based algorithm.

A. Problem reformulation and assumptions

In this paper, we consider a slightly different system de-
scription other than the general form Eq. (1). Specifically, we
require the drift coefficient can be decomposed in a way such
that the control-dependent term is explicitly coupled with the
diffusion coefficient: ∀(t, x, a) ∈ [0, T ]× Rn ×A,

b(t, x, a) = b̄(t, x) + σ(t, x)b̂(t, x, a). (9)

Namely, b(t, x, a) can be split into two parts; one b̄(t, x) is
independent of control, and the other one σ(t, x)b̂(t, x, a) is
control-dependent. It seems too restrictive at the first glance.
But, if σσ⊺ is nondegenerate, i.e., (σσ⊺)−1 exists on [0, T ]×
Rn, then the desired decomposition exists. Indeed, we can
choose b̄ ≡ 0 and b̂ ≡ σ⊺(σσ⊺)−1b. Also, we require that a
measurable minimizing function µ is given such that for any
(t, x, z) ∈ [0, T ]× Rn × Rd,

µ(t, x, z) ∈ arginf
a∈A

{
⟨b̂a(t, x), z⟩+ fa(t, x)

}
. (10)

This function is useful in canceling the painful infimum
operator in HJB equation. To see this, we note that the
diffusion coefficient σ is independent of control, and thus, for
any (t, x) and smooth function v(·, ·),

arginf
a∈A

{L av(t, x) + fa(t, x)}

= arginf
a∈A

{⟨b̄+ σb̂a, ∂xv(t, x)⟩+ fa(t, x)}

= µ(t, x, σ⊺∂xv(t, x)).

We should stress that this property holds only for b =
b̄ + σb̂. Without the explicit appearance of σb̂, the definition
of µ would be problematic. However, for the affine system
and quadratic control cost, which is main topic of adaptive
dynamic programming [11], [29]–[33], the minimizer of the
right-hand side of Eq. (10) uniquely exists and admits a closed
analytic form. In particular, suppose that b is linear in a (then
so is b̂) and that f is quadratic in a, and that A is closed and
convex. Then, µ can be obtained by projecting the minimizer
of a quadratic function onto a closed convex set. See also [15]
for a more general discussion on the existence of µ.

In order to rigorously state our algorithm and establish the
desired convergence results, we need to pose some conditions
on our problem. At first, we recall the useful uniform Lipschitz
continuity and uniform boundness, which are able to ensure
the existence and uniqueness of solutions to SDEs and BSDEs.

Definition 1 (Uniform Lipschitz continuity and boundness). A
continuous function ϕ(t, x, y) is said to be uniformly Lipschitz
continuous in x, y with respect to t if there exists a positive
constant L such that for any t ∈ E1, x, x′ ∈ E2, y, y′ ∈ E3,

∥ϕ(t, x, y)− ϕ(t, x′, y′)∥ ≤ L∥x− x′∥+ L∥y − y′∥, (11)

where E1, E2, E3 are nonempty subsets of Euclidean spaces
with proper dimensions.

Further, ϕ is said to be uniformly bounded if there exists a
constant L such that (suppose 0 ∈ E2, E3)

∥ϕ(t, 0, 0)∥ ≤ L, ∀t ∈ E1. (12)

For convenience, let CUniLip(E1 × E2 × E3) denote the
collection of functions satisfying Eq. (11), and CUniLip

b (E1 ×
E2 × E3) denote the collection of functions satisfying both
Eq. (11) and Eq. (12).

Remark III.1. Note that the Lipschitz condition may be only
local if these subsets E1, E2, E3 are bounded. In addition, any
function valued in a bounded set is uniform bounded.

A useful property of CUniLip
b is the linear growth rate. Using

the triangle inequality, any ϕ ∈ CUniLip
b (E1, E2, E3) satisfies

that, for any (t, x, y) ∈ E1 × E2 × E3,

∥ϕ(t, x, y)∥ ≤ L(1 + ∥x∥+ ∥y∥).

Convention 1. For continuous function ϕ1(t, x) or ϕ2(x), we
mean ϕ1 or ϕ2 ∈ CUniLip(E1 × E2 × E3) if the extended
function ϕ̃1 or ϕ̃2 ∈ CUniLip(E1 × E2 × E3), where

ϕ̃1(t, x, ·) ≡ ϕ1(t, x), ϕ̃2(·, x, ·) ≡ ϕ2(x).

We apply this simplification to CUniLip
b too.

Remark III.2. For univariate function ϕ(·) ∈ CUniLip, the
uniform boundness condition trivially holds.

Assumption 1. Let the following assumptions hold.
1) The functions b̄, b̂, σ, f, g ∈ CUniLip([0, T ] × Rn ×

A). Moreover, the given minimizing function µ ∈
CUniLip([0, T ]× Rn × Rd).

2) The functions b̄, µ, f are uniformly bounded: ∀t ∈ [0, T ],

∥b̄(t, 0, 0)∥+ ∥µ(t, 0, 0)∥+ |f(t, 0, 0)| ≤ L;

and b̂, σ are bounded: ∀(t, x, a) ∈ [0, T ]× Rn ×A,

∥b̂(t, x, a)∥+ ∥σ(t, x)∥ ≤ L.

3) For any α ∈ CUniLip
b ([0, T ] × Rn), the linear

Cauchy problem Eq. (7) has a smooth solution wα ∈
C1,2([0, T ]×Rn) such that ∂xwα ∈ CUniLip

b . Moreover,
the HJB Eq. (6) has such a smooth solution v∗ too.

Remark III.3. As a matter of fact, one essential condition on
the existence of a smooth solution to HJB equation (6) is
the uniform elliptic condition: ∃δ > 0 such that y⊺σσ⊺y ≥
δy⊺y holds for any (t, x, y) ∈ [0, T ]×Rn ×Rn. Clearly, this
condition is also sufficient to ensure the existence of b̄ and b̂.

Remark III.4. Under Assumption 1.1 and Assumption 1.2, we
have b, σ, f, g, µ ∈ CUniLip

b , and thus, for any policy α ∈
CUniLip

b taking values in A, there is bα ∈ CUniLip
b . Hence, the
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solution to Eq. (1) uniquely exists for any (t, x). Moreover,
for any ℓ > 1, E[supt≤s≤T ∥Xα,t,x

s ∥ℓ] is finite [34].
Remark III.5. In linear quadratic problems, the assumptions
that f and g are bounded and Lipschitz are violated. In
practice, however, we can make some minor modifications to
the problem in order to satisfy these assumptions. The idea
is manually clipping the control and state in these functions
below a certain threshold. For example, if f(t, x, a) = x⊺Qx+
a⊺Ra, then f̃(t, x, a) = f(t, x̃, ã) may be used, where x̃ and ã
are component-wise clipped versions of x and a, respectively.
By choosing a sufficiently large threshold, we can still obtain a
satisfactory suboptimal control policy of the original problem.

We stress that Assumption 1 might not be the most general
condition to make above assertions. But, it is very convenient
to illustrate our key ideas without getting too involved into
abstract theories of PDEs and SDEs. In particular, we have
the following lemma to characterize value functions, which
also serves as a starting point for the following subsections.

Lemma 1. Let Assumption 1 hold. Then, for any policy
α ∈ CUniLip

b ([0, T ] × Rn) valued in A, the value function
vα, defined by Eq. (1) and Eq. (2) is a unique solution to
PDE (7) with vα ∈ C1,2. Moreover, vα admits the stochastic
representation Eq. (8).

Proof: This is a direct consequence of Remark III.4 and
[26, Theorem 7.4.1].
Remark III.6. Under Assumption 1.3, ∂xvα ∈ CUniLip

b , and
thus, µ(·, ·, σ⊺∂xvα(·, ·)) is a policy valued in A and lies in
CUniLip. It is also important to note that in the stochastic
representation Eq (8), the term σ⊺∂xvα is encoded in the Z
process. Theorefore, obtaining Z is to some extent sufficient
to construct the policy µ(·, ·, σ⊺∂xvα(·, ·)).

B. The standard policy iteration subroutine
Let us focus on the HJB Eq. (6) and the PDE characteriza-

tion Eq. (7). Suppose α is an optimal policy, then vα satisfies
both of these equations. Combining Eq. (6) and Eq. (7), for
any (t, x) ∈ [0, T ]× Rn, we have

L αvα(t, x)+fα(t, x) = inf
a∈A
{L avα(t, x)+fa(t, x)}. (13)

Conversely, if this equation is satisfied by some policy α, then
its value function vα satisfies the HJB equation. Hence, the
central idea of policy iteration is to force Eq. (13) to hold.

The standard policy iteration algorithm works as follows.
1) Given a policy α, find its value function vα by Eq. (7).
2) Given vα, find a policy α′ such that for any (t, x),

α′(t, x) = arginf
a∈A

{L avα(t, x) + fa(t, x)}.

Alternatively repeating these two steps generates a sequence of
policies. The first step is also known as policy evaluation, and
the second step is policy improvement. According to Eq. (10),
the policy improvement step can also be realized by setting

α′(t, x) := µ(t, x, z(t, x)), ∀(t, x) ∈ [0, T ]× Rn, (14)

where z(·, ·) = σ⊺∂xvα(·, ·). For simplicity, we combine pol-
icy evaluation and policy improvement into a single procedure

and refer to it as the standard policy iteration subroutine,
or the PDE-based subroutine; see Algorithm 1. The global
convergence result of GPI equipped with this subroutine is
provided in Proposition 1.

Algorithm 1 A PDE-based subroutine of GPI.
Input: a feedback control policy α.
Output: a feedback control policy α′ not worse than α.

1: Obtain the value function vα by Eq. (7).
2: Construct the output policy by Eq. (14) with z ← σ⊺∂xvα.

Proposition 1. Let Assumption 1 hold. Starting at an ini-
tial policy α0 valued in A, let {αn}n∈N denote the policy
sequence generated by GPI equipped with Algorithm 1. If
α0 ∈ CUniLip

b ([0, T ] × Rn) is valued in A, then αn is
admissible for any n ≥ 0. For any (t, x) ∈ [0, T ] × Rn,
the cost sequence {vαn

(t, x)}n∈N is monotonically decreasing
to v∗(t, x). Moreover, there exists a constant C = C(t, x)
depending on (t, x) and a constant q ∈ (0, 1) independent to
(t, x) such that

|vαn

(t, x)− v∗(t, x)| ≤ C(t, x)qn, for any n ≥ 0. (15)

Proof: The assertion of admissibility is a direct conse-
quence of Remark III.6. The monotonicity is also expected due
to the definition of µ [12]. Under our assumptions, Eq. (15) can
be demonstrated by following the proof of [15, Theorem 4.1],
so we omit this technical proof here. The proof of Eq. (15)
can also be viewed as a simplified version of the proof of
Theorem 4; see Remark IV.4 for more details.

C. Two key issues
To this end, we have formulated the PDE-based subroutine

in Algorithm 1 and developed corresponding convergence
results. Sadly, we have to admit that the global linear con-
vergence rate in Proposition 1 generally cannot be achieved
with a practical program. The dilemma arises from the policy
evaluation step.

The first issue is the design of numerical methods for policy
evaluation. In Algorithm 1, policy evaluation is formulated as
solving PDEs, which generally has no closed form solution
and has to be solved with numerical methods. Traditional
numerical ways for PDEs require discretizing the time-state
space, and thus, suffer from the curse of dimensionality.
Moreover, extending traditional ways to model-free settings
seems to be challenging. Based on these considerations, an-
other two policy iteration subroutines utilizing the FBSDE
characterization of vlaue functions are proposed in Section IV.
We also develop a numerical method for solving FBSDEs by
optimizing a novel criterion; see Section V.

The second issue is more subtle. Since numerical methods
cannot be expected to provide the exact solution, especially
after time discretization, approximation errors are generally
inevitable. Consequently, the improved policy based on this
inexact solution is different from the expected output policy.
To address this issue, we quantify these approximation errors
as ϵn and analyze the convergence of the policy iteration with
ϵn > 0. We discuss this topic at the end of Section IV.



6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2022

IV. FBSDE-BASED POLICY ITERATION ALGORITHMS

In this section, we propose two FBSDE-based policy it-
eration algorithms. The convergence result is established by
showing the equivalence between the PDE-based and FBSDE-
based policy iteration subroutines. At last, we present a robust
convergence result with respect to approximation errors. In all
following sections, the initial pair of time states (t, x) is fixed.

A. The on-policy subroutine

In the PDE-based subroutine, the next trial policy is con-
structed by µ and σ⊺∂xvα, where the latter is obtained via
solving PDE (7). In view of Lemma 1, it is very natural to
consider carrying out policy evaluation by solving FBSDE (8).
We formulate this idea in Algorithm 2.

The second step of Algorithm 2 is the key of this work.
Instead of evaluating vα via a linear PDE and substituing ∂xv

α

into the policy improvement step, we directly obtain a zα term
via an optimization problem, and then construct the next trial
policy based on it. We will discuss in detail how to minimize
the objective function Eq. (16) in Section V. Here, we simply
assume that there is a method that can be used to determine
the global solution zα.

Algorithm 2 The on-policy subroutine of GPI.
Input: a feedback control policy α; an initial point (t, x).
Output: a feedback control policy α′ not worse than α.

1: Find the solution Xα to the forward SDE (1).
2: Find an optimal solution zα to the optimization problem

min
z∈CUniLip

b

ϵα := E
∫ T

t

∥z(s,Xα
s )− Zα

s ∥2 ds, (16)

where Zα is a part of the solution to the following BSDE

Ys = g(Xα
T ) +

∫ T

s

fα(τ,Xα
τ ) dτ −

∫ T

s

⟨Zτ , dWτ ⟩.

3: Construct the output policy by Eq. (14) with z ← zα.

Comparing the policies returned by Algorithm 2 and Al-
gorithm 1, it can be seen that zα plays the role of σ⊺∂xvα.
According to Lemma 1, σ⊺∂xvα is indeed a global solution to
that optimization problem. Noting that Zα

s = σ⊺∂xvα(s,Xα
s )

holds almost everywhere on the product space [t, T ]× Ω, we
can rewrite the objective function Eq. (16) as

ϵα(z) = E
∫ T

t

h(s,Xα
s ) ds, (17)

where h(·, ·) := ∥z(·, ·)−σ⊺∂xvα(·, ·)∥2 ≥ 0. Hence, we have
ϵα(zα) = 0. In the opposite direction, however, one cannot
say that σ⊺∂xvα is the unique optimal solution in CUniLip

b ,
since h ≡ 0 is not the necessary condition of ϵα = 0. In
fact, the necessary and suffcient condition is h equals zero
almost everywhere on the product space under the measure
induced by Xα(s, ω). To put it another way, we can only
say that zα(·, ·) equals σ⊺∂xvα(·, ·) almost everywhere along
the process Xα,t,x. Fortunately, Lemma 2 below suggests that
this almost everywhere identity is enough to guarantee that

Algorithm 1 and Algorithm 2 are equivalent, in the sense that
the returned policies have the same cost value.

Before proceeding, we would like to clarify one more point
regarding this algorithm. The first two steps for obtaining
zα can be implemented in a pure data-driven fashion. The
forward state process {Xα

s }t≤s≤T can be sampled by sending
the current policy α to the dynamic system and observe
the state trajectory. Furthermore, it is possible to solve that
optimization problem using only samples without knowing
the exact solution (Y α, Zα). This is the reason why we call
Algorithm 2 on-policy. In the next subsection, we introduce
the off-policy subroutine, where the forward SDE is driven by
a fixed behavior policy αb instead of the current policy α.

Lemma 2. Let Assumption 1 hold. For any α1, α2 ∈
CUniLip

b ([0, T ] × Rn), let X1, X2 be their state processes,
respectively. Then, for any nonnegative measurable function
h(·, ·) ≥ 0, the following statements are equivalent:

1) h(s,X1
s ) = 0 holds ds⊗ dP-a.e. on [t, T ]× Ω;

2) h(s,X2
s ) = 0 holds ds⊗ dP-a.e. on [t, T ]× Ω.

Proof: Consider the following two auxiliary processes

W i
s = Ws +

∫ s

t

b̂α
i

(τ,Xi
τ ) dτ, s ∈ [t, T ], i = 1, 2.

Noting that {b̂αi

(s,Xi
s); t ≤ s ≤ T} is bounded and thus sat-

isfies Novikov condition, there exists probability measure Pi,
equivalent to P, such that W i becomes a standard Brownian
motion under Pi. This is known as the Girsanov’s theorem
[23, Chapter 3]. Therefore, (X1,W 1,P1) and (X2,W 2,P2)
are two weak solutions to the following SDE:

Xs = x+

∫ s

t

b̄(τ,Xτ ) dτ +

∫ s

t

σ(τ,Xτ ) dWτ .

By the uniformly Lipschitz continuity and boundness of b̄ and
σ, the strong existence and uniqueness hold for this SDE. Then
the weak uniqueness in the sense of probability law holds too,
namely, X1 and X2 have the same law. Thus, the integral of
h(s,X1

s ) equals the integral of h(s,X2
s ):∫ T

t

(∫
h(s,X1

s ) dP1

)
ds =

∫ T

t

(∫
h(s,X2

s ) dP2

)
ds.

We conclude that h(s,X1
s ) = 0 holds ds⊗ dP1-a.e. if and only

if h(s,X2
s ) = 0 holds ds⊗ dP2-a.e.. The proof is finished by

noting that P,P1,P2 are equivalent to each other.
This lemma offers the freedom of changing the underlying

process in the optimization problem of the on-policy sub-
routine. By setting h(·, ·) as Eq. (17), this lemma suggests
that minimizing the E

∫ T

t
h(s,Xα

s ) to zero is equivalent to
minimizing E

∫ T

t
h(s,Xαb

s ) to zero for any αb ∈ CUniLip
b .

Thus, it is also reasonable to choose a policy αb different
from α and optimize the integral of h along Xαb

. On the
other hand, let E

∫ T

t
h(s,Xα

s ) = 0 hold and α′ be the policy
returned by Algorithm 1. Then, h(s,Xα′

s ) = 0 holds almost
everywhere on the product space [t, T ]×Ω. This argument is
also the key to prove the following equivalence between the
PDE-based subroutine and the on-policy subroutine.
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Theorem 2. Let Assumption 1 hold. For an input policy α ∈
CUniLip

b ([0, T ] × Rn) valued in A, let α′
1 and α′

2 denote the
outputs of Algorithm 1 and Algorithm 2, respectively. Then,
α′
1 and α′

2 generate the “same” trajectory starting at (t, x):

X
α′

1,t,x
s = X

α′
2,t,x

s , ds⊗ dP-a.e. on [t, T ]× Ω.

Moreover, vα
′
1(t, x) = vα

′
2(t, x).

Proof: Let vα and zα denote the same objects in
Algorithm 1 and Algorithm 2, repsectively. We write down
the explicit expression of α′

1, α
′
2:

α′
1(·, ·) = µ(·, ·, σ⊺∂xvα(·, ·)), α′

2(·, ·) = µ(·, ·, zα(·, ·)),

and denote by h(·, ·) = ∥zα(·, ·)− σ⊺∂xvα(·, ·)∥2.
According to Remark III.6, α′

1, α
′
2 are admissible. Consider

the forward SDEs satisfied by Xα′
1 , Xα′

2 :

X
α′

1
s = x+

∫ s

t

bα
′
1(τ,X

α′
1

τ ) dτ +

∫ s

t

σ(τ,X
α′

1
τ )dWs,

X
α′

2
s = x+

∫ s

t

bα
′
2(τ,X

α′
2

τ ) dτ +

∫ s

t

σ(τ,X
α′

2
τ )dWs.

We claim that

α′
1(s,X

α′
1

s ) = α′
2(s,X

α′
1

s ), ds⊗ dP-a.e. on [t, T ]. (18)

Indeed, it can be concluded from Lemma 1 that h(s,Xα
s ) = 0

almost everywhere on [t, T ] × Ω. Then, applying Lemma 2
yields h(s,X

α′
1

s ) = 0 almost everywhere. Denote by

X̃
α′

1
s = x+

∫ s

t

bα
′
2(τ,X

α′
1

τ ) dτ +

∫ s

t

σ(τ,X
α′

1
τ )dWs

and ϕ(u) := E
∫ t+u

t
∥Xα′

1
τ −X

α′
2

τ ∥2 dτ . Noting Eq. (18) and
the Lipschitz continuity of bα

′
2 and σ, we have

ϕ(u) = E
∫ t+u

t

∥X̃α′
1

s −X
α′

2
s ∥2 ds

≤ E
∫ t+u

t

{
2

[∫ s

t

(bα
′
2(τ,X

α′
1

τ )− bα
′
2(τ,X

α′
2

τ )) dτ

]2
+ 2

[∫ s

t

(σ(τ,X
α′

1
τ )− σ(τ,X

α′
2

τ )) dWτ

]2}
ds

≤ E
∫ t+u

t

2(s− t+ 1)L2

∫ s

t

∥Xα′
1

τ −X
α′

2
τ ∥2 dτ ds

≤ 2(T + 1)L2

∫ u

0

ϕ(s) ds, ∀u ∈ [0, T − t].

Hence, by Grönwall’s inequality, there is ϕ(T − t) = 0. This
proves that X

α′
1

s = X
α′

2
s almost everywhere on [t, T ] × Ω.

Moreover, the cost of α′
1 and α′

2 at (t, x) is equal.

Remark IV.1. This result reveals that there is no difference
between the cost sequence produced by GPI using the PDE-
based subroutine and the on-policy subroutine. Thus, all the
convergence properties of the standard PI is preserved in our
probabilistic framework.

Corollary 1. For any fixed (t, x) ∈ [0, T ] × Rn, the con-
clusions of Proposition 1 hold if Algorithm 1 is replaced by
Algorithm 2.

Remark IV.2. Because the output of Algorithm 2 may depend
on the argument (t, x), we cannot make a conclusion that
{vαn

(t′, x′)} is monotone at any (t′, x′) as in Proposition 1.
Nevertheless, the cost sequence {vαn

(t, x)} is still monoton-
ically decreasing, where (t, x) is the argument passed into
Algorithm 2.

B. The off-policy subroutine
On-policy and off-policy are terminologies in reinforcement

learning [5]. Roughly speaking, on-policy and off-policy al-
gorithms are both data-driven but different in the way of
collecting data. In an on-policy algorithm, a value function
of a policy α is evaluated with data collected by itself. This
corresponds to FBSDE (8), where the forward SDE is driven
by α and the solution to the backward SDE is related to vα

too. However, in an off-policy algorithm, the value function
vα is generally evaluated with data collected by a different
policy, called the behavior policy αb usually. The advantage
of off-policy algorithms is the high data efficient. If we adopt
the on-policy subroutine Algorithm 2 in GPI, then the current
policy α generally changes during the iteration. Therefore, we
have to resample data at the beginning of each iteration, i.e.,
solving a new forward SDE in our case. On the other hand,
if we adopt the off-policy technique, then we can evaluate the
value function of the new policy with pre-collected data. This
in turn improves the data efficiency. Also, we expect that the
variance effect would be reduced because all data are collected
by the same policy.

With the help of nonlinear Feynman-Kac’s formula, it is
straightforward to extend the on-policy FBSDE characteriza-
tion of value function to the off-policy case.

Lemma 3. Let the condition of Lemma 1 hold and use the
same notation. For any policy αb ∈ CUniLip

b ([0, T ] × Rn)
valued in A, the value function vα admits the following
stochastic representation:

Xb
s = x+

∫ s

t

bα
b

(τ,Xb
τ ) dτ +

∫ s

t

σ(τ,Xb
τ ) dWτ ,

Ys = g(Xb
T ) +

∫ T

s

fα(τ,Xb
τ ) dτ −

∫ T

s

⟨Zτ , dWτ ⟩

+

∫ T

s

⟨b̂α(τ,Xb
τ )− b̂α

b

(τ,Xb
τ ), Zτ ⟩ dτ,

Ys = vα(s,Xb
s), ∀s ∈ [t, T ], dP-a.s.,

Zs = σ⊺∂xvα(s,Xb
s), ds⊗ dP-a.e. on [t, T ]× Ω.

(19)

Proof: By the definitions of b̄, b̂ and µ, we can rewrite
the PDE satisfied by vα as follows:

0 = ⟨b̂α(t, x)− b̂α
b

(t, x), σ⊺∂xvα(t, x)⟩
+ L αb

vα(t, x) + fα(t, x), ∀(t, x) ∈ [0, T )× Rn,

vα(T, x) = g(x), ∀x ∈ Rn.

Applying the nonlinear Feynman-Kac’s formula [26, Theo-
rem 7.4.5] to this leads to the desired representation.
Remark IV.3. If αb ≡ α, this degenerates to Lemma 1. It is
important to note that the forward process Xb is independent
of α, which is the key difference between the on-policy
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and off-policy methods. GPI equipped with the off-policy
subroutine and a fixed αb should be viewed as an iteration
of BSDEs, while that equipped with the on-policy subroutine
should be viewed as an iteration of FBSDEs.

Based on Lemma 3, we propose Algorithm 3, in which the
optimization problem is modified according to Eq. (19). It can
be concluded from Lemma 2 that the optimization problems
in Algorithm 2 and Algorithm 3 have the same solutions. In
light of this observation, we are able to prove that the returned
polices of on-policy and off-policy subroutines are equivalent.

Algorithm 3 The off-policy subroutine of GPI.
Input: policies α, αb; an initial condition (t, x).
Output: a policy α′ not worse than α.

1: Find the solution Xb to the forward SDE (1) with α← αb.
2: Find an optimal solution zα to the optimization problem

min
z∈CUniLip

b

ϵα := E
∫ T

t

∥z(s,Xb
s)− Zα,b

s ∥2 ds, (20)

where Zα,b is a part of the solution to the following BSDE

Y α,b
s = g(Xb

T ) +

∫ T

s

fα(τ,Xb
τ ) dτ −

∫ T

s

⟨Zα,b
τ , dWτ ⟩

+

∫ T

s

⟨b̂α(τ,Xb
τ )− b̂α

b

(τ,Xb
τ ), Z

α,b
τ ⟩ dτ.

3: Construct the output policy by Eq. (14) with z ← zα.

Theorem 3. Let the condition of Theorem 2 hold and use the
same notation. If αb ∈ CUniLip

b ([0, T ] × Rn) is valued in A,
then the output policies of Algorithm 2, 3, denoted by α′

2, α
′
3,

generate the “same” trajectory starting at (t, x):

X
α′

2,t,x
s = X

α′
3,t,x

s , ds⊗ dP-a.e. on [t, T ]× Ω.

Moreover, vα
′
2(t, x) = vα

′
3(t, x).

Proof: The proof is similar to the proof of Theorem 2
except that we need to show

α′
2(s,X

α′
2

s ) = α′
3(s,X

α′
2

s ), ds⊗ dP-a.e. on [t, T ]× Ω.

Let zαi (i = 2, 3) be the term zα in Algorithm 2 and Algo-
rithm 3, respectively. Using Lemma 1–3, we have

zαi (s,X
α′

2
s ) = σ⊺∂xvα(s,X

α′
2

s ), ds⊗ dP-a.e. on [t, T ]×Ω.

Substituting this into the definition of α′
i finishes our proof.

In view of Theorem 2 and Theorem 3, we conclude that
these three subroutines are equivalent to each other. Con-
sequently, the following convergence result for Algorithm 3
holds.

Corollary 2. For any fixed (t, x) ∈ [0, T ] × Rn and αb ∈
CUniLip([0, T ]× Rn) valued in A, the conclusions of Propo-
sition 1 hold if Algorithm 1 is replaced by Algorithm 3.

C. A robust convergence result
Consider the optimization problem in Algorithm 3. In view

of Lemma 3, there exists a zα with ϵα(zα) = 0. In practice,
however, it is usually the case that we can only find a
suboptimal solution ẑ and thus ϵα(ẑ) > 0. If we construct
a policy by Eq. (14) with z ← ẑ, then there is no guarantee
that this new policy α̂ performs better than the current policy
α. To see this, we apply Itô’s formula to obtain (noting the
PDEs satisfied by value functions)

vα(t, x)− vα̂(t, x)

= E
∫ T

t

(L α̂vα̂ −L α̂vα)(s,X α̂
s ) ds

= E
∫ T

t

(
L αvα + fα −L α̂vα − f α̂

)
(s,X α̂

s ) ds.

If ẑ = zα, then α̂(s,X α̂
s ) = µ(s,X α̂

s , σ
⊺∂xvα(s,X α̂

s )) almost
everywhere on [t, T ]×Ω, and thus, vα(t, x)− vα̂(t, x) equals

E
∫ T

t

(
L αvα + fα − inf

a∈A
{L avα + fa}

)
(s,X α̂

s ) ds ≥ 0.

If ϵα(ẑ) > 0, then generally vα(t, x) ≥ vα̂(t, x) does not hold,
and thus the monotonicity of policy improvement is broken.

Below, we study the case in which the objective function
in the off-policy subroutine does not reach zero during policy
iterations. Though the cost sequence {vαn

(t, x)} may be not
monotone, we show that it still converges to the optimal cost if
the n-th objective value ϵn converges to zero. To make it more
clear, we spell the policy iteration procedure in Algorithm 4.
In comparison to the GPI that is equipped with the off-policy
subroutine, Algorithm 4 contains two important differences.
The first difference is that the behavior policy αb is fixed
during iteration. This is not the only way to apply the off-
policy BSDE subroutine in GPI, as it can be proved that the
cost of the output policy does not change if αb is different. In
order to view the whole algorithm as the iteration of BSDEs,
however, we do not allow the forward SDE changes during
iteration. The second difference is that zn is not necessarily
an optimal solution of Eq. (20). Also, ϵn is not necessarily
equal to 0.

Algorithm 4 A BSDE-based Policy Iteration Algorithm.
Input: policies α0, αb; an initial condition (t, x).
Output: a sequence of policies {αn}.

1: Find the solution Xb to the forward SDE (1) with α← αb.
2: for n = 0, 1, 2, . . . do
3: Run a numerical method to solve the optimization

problem (20) with α← αn. Denote by zn the returned
solution and ϵn the associated objective value.

4: Construct αn+1 by Eq. (14) with z ← zn.
5: end for

With notations defined in Algorithm 4, we can state our
robust convergence result as follows.

Theorem 4. Let Assumption 1 hold and use notations in
Algorithm 4. If α0, αb ∈ CUniLip

b ([0, T ] × Rn) are policies
valued in A, then αn is admissible for any n ≥ 0. Moreover,
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there exist constants q ∈ (0, 1) and γ > 0, both independent
of (t, x), such that the following inequality holds

limsup
n→∞

∣∣vαn

(t, x)− v∗(t, x)
∣∣2 ≤ qeγ(T−t)

1− q
· limsup

n→∞
ϵn.

Proof: Throughout this proof, we fix the forward state to
Xb, and use Fs to denote F (s,Xb

s) for any function F (·, ·).
The admissibility is a direct consequence of Remark III.4.

According to Lemma 3, for n ≥ 1, we have

Y n
s = g(Xb

T ) +

∫ T

s

fαn

τ +(b̂α
n

τ − b̂α
b

τ )⊺Zn
τ dτ −

∫ T

s

(Zn
τ )

⊺dWτ ,

where Y n
s = vα

n

(s,Xb
s), Zn

s = σ⊺∂xvα
n

(s,Xb
s). Similarly,

Y ∗
s = g(Xb

T ) +

∫ T

s

fα∗

τ +(b̂α
∗

τ − b̂α
b

τ )⊺Z∗
τ dτ −

∫ T

s

(Z∗
τ )

⊺dWτ ,

where Y ∗
s = v∗(s,Xb

s), Z∗
s = σ⊺∂xv∗(s,Xb

s).
Define h : Ω× [0, T ]× Rd × Rd → R by

h(s, z, Z) := fµs(z)
s + ⟨b̂µs(z)

s − b̂α
b

s , Z⟩.
Then, we can verify that under Assumption 1 there is a
constant L such that for any (s, z, Z) ∈ [t, T ]× Rd × Rd,

|h(s, z, Z)− h(s, 0, 0)| ≤ L∥z∥+ L∥Z∥, P-a.s.,

and that E
∫ T

t
∥h(s, 0, 0)∥2 ds < ∞. Moreover, it can be

proved that ∥Z∗
s ∥ ≤ L∥∂xv∗(s,Xb

s)∥ can be further bounded
by some constant K [26, Proposition 4.3.1]; see also [35,
Chapter 4] for more general discussions on the properties of
∂xv

α. Hence, we have

|h(s, zn−1
s , Zn

s )− h(s, Z∗
s , Z

∗
s )|

≤ |fµs(z
n−1
s )

s − f
µs(Z

∗
s )

s |+ |⟨b̂µs(z
n−1
s )

s − b̂α
b

s , Zn
s − Z∗

s ⟩|
+ |⟨b̂µs(z

n−1
s )

s − b̂
µs(Z

∗
s )

s , Z∗
s ⟩|

≤ L∥µs(z
n−1
s )− µs(Z

∗
s )∥+ 2L∥Zn

s − Z∗
s ∥

+K∥b̂µs(z
n−1
s )

s − b̂
µs(Z

∗
s )

s ∥
= (L2 +KL)∥zn−1

s − Z∗
s ∥+ 2L∥Zn

s − Z∗
s ∥.

To this end, all conditions of [15, Lemma A.5] are verified,
and thus, the following estimation holds for any n ≥ 1:

E |Y n
t − Y ∗

t |2 + E
∫ T

t

eγ(s−t)∥Zn
s − Z∗

s ∥2 ds

≤ q̃ E
∫ T

t

eγ(s−t)∥zn−1
s − Z∗

s ∥2 ds,
(21)

where γ > 0 and q̃ ∈ (0, 1/2) depend only on the Lipschitz
constant in Assumption 1. Introducing the following notations

an := E |Y n
t − Y ∗

t |2 = |vαn

(t, x)− v∗(t, x)|2,

bn := E
∫ T

t

eγ(s−t)∥Zn
s − Z∗

s ∥2 ds,

cn := E
∫ T

t

eγ(s−t)∥zns − Zn
s ∥2 ds ≤ eγ(T−t)ϵn,

we further relax the inequality Eq. (21) to (letting q = 2q̃)

an + bn ≤ q(bn−1 + cn−1), ∀n ≥ 1. (22)

Noting that an ≥ 0, we substitute bn ≤ q(bn−1 + cn−1) into
the right-hand side of Eq. (22) repeatly:

an + bn ≤ qcn−1 + q2(bn−2 + cn−2)

≤ qcn−1 + q2cn−2 + q3(bn−3 + cn−3)

≤ qcn−1 + · · ·+ qn−1c1 + qn(b0 + c0) =: Sn.
(23)

Without loss of generality, we assume limsup ϵn < ∞.
Otherwise, the equality to be proved holds trivially. Then, we
have limsup cn ≤ eγ(T−t) limsup ϵn < ∞. This means there
is a positive integer M such that cn is bounded by some c <∞
for any n ≥M . Hence,

Sn = qcn−1 + · · ·+ qn−McM + · · ·+ qnc0 + qnb0

≤ (q + q2 + · · ·+ qn−M )c

+ qn−M+1 max{ck : 0 ≤ k ≤M − 1}+ qnb0

≤ q

1− q
c+ qn−M+1 max{ck : 0 ≤ k ≤M − 1}+ qnb0.

This implies that Sn is also bounded for sufficient large
n, i.e., limsupSn < ∞. Observating that Sn satisfies the
recurrence equation Sn = q(Sn−1 + cn−1), we can conclude
that limsupSn < q

1−q limsup cn by taking limsup on both
sides. Noting an ≤ Sn, we have

limsup
n→∞

an ≤
q

1− q
limsup
n→∞

cn.

Expanding the definitions of an and cn finishes the proof.
Remark IV.4. If αb = α0 and ϵn = 0 for any n, then cn = 0
for any n, and Eq. (23) is reduced to an+bn ≤ qnb0. Dropping
bn and expanding the definition of an yield the Eq. (15). This
shows that our proof can be adopted to prove Proposition 1.

V. SOLVING FBSDES BY OPTIMIZATION

In this section, we discuss how to solve the optimization
problems encountered in the FBSDE-based subroutines, in
which we propose a novel criterion, called the (general) BML
criterion. Due to the uncoupling nature of the FBSDEs in our
policy iteration algorithms, we focus on solving BSDEs.

A. A practical objective function
The on-policy subroutine involves a BSDE in the form

Ys = ξ +

∫ T

s

fτ dτ −
∫ T

s

⟨Zτ , dWτ ⟩, ∀s ∈ [t, T ]. (24)

Specifically, for a trial process z ∈ H2, we are interested in
calculating the distance E

∫ T

t
∥Zs−zs∥2 ds between z and the

true solution Z. The difficulty is that Z is not known and goes
into the equation. Hence, we need to find practical objective
functions that do not explicitly contain Z. For this purpose,
the following theorem provides useful insights.

Theorem 5. Suppose that ξ ∈ L2
FT

and f ∈ H2. Then,
BSDE (24) admits a unique adapted solution (Y, Z) ∈ S2×H2.
For adapted process z ∈ H2, let Ỹ z

s denote the process (not
necessarily adapted)

Ỹ z
s = ξ +

∫ T

s

fτ dτ −
∫ T

s

⟨zτ , dWτ ⟩, ∀s ∈ [t, T ].
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Then, it holds that

E |Ỹ z
t − E Ỹ z

t |2 = E
∫ T

t

∥Zs − zs∥2 ds. (25)

Proof: The uniqueness and existence are standard results
for BSDEs; see [36, Chapter 6] for example. We rewrite the
left-hand side of Eq. (25) as

E |Ỹ z
t − Yt|2 + 2E[(Ỹ z

t − Yt)(Yt − E Ỹ z
t )] + E |Yt − E Ỹ z

t |2.

Due to the fact that Ft contains only P-null sets, we know
that Yt = EYt holds almost surely. Moreover,

E Ỹ z
t = E

[
ξ +

∫ T

t

fs ds

]
= EYt.

Thus, Yt − E Ỹ z
t is almost surely zero and

E |Ỹ z
t − E Ỹ z

t |2 = E |Ỹ z
t − Yt|2

= E
[
−
∫ T

t

⟨zs, dWs⟩+
∫ T

t

⟨Zs, dWs⟩
]2
.

Thus, the desired equality holds due to Itô’s isometry.

Remark V.1. By Remark III.4, the BSDE in the on-policy
subroutine satisfies the conditions here. Thus, E |Ỹ z

t −E Ỹ z
t |2

can be used in the place of the objective function. We call this
the special BML criterion, where its general form is discussed
in the next subsection.

An intuitive explanation of the BML criterion is based on
the measurability. By definition, (Ỹ z, z) has already satisfied
the stochastic integral relationship as (Y, Z). Not surprisingly,
this is not sufficient to conclude that it is a solution, as z is
just arbitrarily selected. The key is that a true pair of solution
(Y, Z) should also be adapted. That is to say, Ỹ z

s should be
Fs-measurable for any s ∈ [t, T ]. This is not a trivial matter
since the definition of Ỹ z

s involves the “future” information,
particularly the {Wτ}s≤τ≤T . Assume, however, that Ỹ z

t′ has
been proved to be Ft′ -measurable. Then it is safe to conclude
that Ỹ z

s is Fs-measurable for any s ∈ [t′, T ]. This is because
for any s ∈ [t′, T ], we have

Ỹ z
t′ = ξ +

∫ T

t′
fτ dτ −

∫ T

t′
⟨zτ , dWτ ⟩

= Ỹ z
s +

∫ s

t′
fτ dτ −

∫ s

t′
⟨zτ , dWτ ⟩.

Clearly, the integral part is Fs-measurable. As a result, Ỹ z
s

is Fs-measurable because Ỹ z
t′ is Fs-measurable (recall that

Ft′ ⊂ Fs if t′ ≤ s).
The left-hand side of Eq. (25) serves as a criterion of

the measurability loss of Ỹ z
t with respect to Ft. Recall that

Ft = σ(N ∪σ(Wt)), where N is the collection of P-null sets
and σ(Wt) is the trivial σ-algebra with Wt = 0. Ỹ z

t is Ft-
measurable if and only if Ỹ z

t is a constant almost surely. To
put it in another way, Ỹ z

t should be equal to the expectation
almost surely. This is exactly the case that Eq. (25) equals 0.

B. The BML Criterion

According to Theorem 5, the distance E
∫ T

t
∥Zs− zs∥2 can

be calculated with only samples of ξ, f and W in BSDE (24).
This allows an optimization-based approach to solving the Z
part of solutions by parameterizing the trial process z, and
then minimizing the practical objective function. However,
in many applications, obtaining the Y part of solutions may
be appealing as well. Indeed, according to Feynman-Kac’s
formula, Yt is the value function at (t, x). If we manage to
find the exact or an approximated solution of Y , then we also
find a method to solve PDEs in the form of Eq. (7).

In the proof of Theorem 5, we ultilize the fact that E Ỹ z
t =

EYt = Yt holds almost surely. Unfortunately, Ỹ z is not a
suitable replacement for Y in applications. The major issue
is that the definition of Ỹ z is “anticipated”. Even if z ≡ Z,
calculating the value of Ỹ z

t by its definition requires samples
of {Ws; t ≤ s ≤ T} and {fs; t ≤ s ≤ T}, which are not
available at the time instant t. Nevertheless, Ỹ z differs from
the true solution only by a martingale term, and this difference
can be eliminated by taking conditional expectation:

E[Ỹ z
s | Fs] = E[Ys | Fs] = Ys, P-a.s., ∀s ∈ [t, T ]. (26)

In light of this, we extend Theorem 5 by adding the distance
between a trial solution ṽ ∈ S2 and the true solution Y .

Theorem 6. Let the condition of Theorem 5 hold and use the
same notation. Then, for any adapted process ṽ ∈ S2, there is

E
∫ T

t

|Ỹ z
s − ṽs|2 ν(ds) = E

∫ T

t

∫ T

s

∥Zτ − zτ∥2 dτ ν(ds)

+ E
∫ T

t

|Ys − ṽs|2 ν(ds),
(27)

where ν is an arbitrary σ-finite measure on [t, T ].

Proof: Similarly, we prove Eq. (27) by splitting the
square term into three terms and showing that the expectation
of the cross term is zero. As ν is σ-finite, we are able to
change the order of expectation and integration, and thus, the
left-hand side of Eq. (27) equals∫ T

t

[
E |Ỹ z

s −Ys|2+2E[(Ỹ z
s −Ys)(Ys−ṽs)]+E |Ys−ṽs|2

]
ν(ds).

The first term can be transformed with Itô’s isometry:

E
∫ T

t

|Ỹ z
s − Ys|2 ν(ds) = E

∫ T

t

∣∣∣∣∫ T

s

⟨zτ − Zτ , dWτ ⟩
∣∣∣∣2 ν(ds)

= E
∫ T

t

∫ T

s

∥zτ − Zτ∥2 dτ ν(ds).

The second term vanishes according to the tower property of
conditional expectation:

E[(Ỹ z
s − Ys)(Ys − ṽs)] = E

[
E[(Ỹ z

s − Ys)(Ys − ṽs) | Fs]
]

= E
[
(Ys − ṽs)E[(Ỹ z

s − Ys) | Fs]
]

= 0.

The last equality comes from the fact that E[(Ỹ z
t − Yt) | Fs]

is zero almost surely.
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Remark V.2. We call Eq. (27) the general BML criterion.
While the special BML criterion focuses solely on the Z
part, its generalization takes the Y part into account as well.
We do this by relacing EY z

t with ṽs. Moreover, Eq. (27)
introduces a measure on the time space [t, T ]. The left-hand
side of Eq. (27) actually descrbies the distance between Ỹ z

and ṽ on the product space (Ω × [t, T ],P ⊗ ν). On the other
hand, this practical objective function can also be interpreted
as the distance between (ṽ, z) and (Y, Z) using this product
measure. Under this generalization, we are given the freedom
of choosing ν when comapring the trial solution with the true
solution. In particular, if ν is set to the Dirac measure centered
on t and ṽ to E[Ỹ z

s | Fs], then it comes to the special BML
criterion. It is also possible to choose different settings of ν
and (ṽ, z). It will be discussed shortly and how the general
BML criterion degenerates into existing methods.

Remark V.3. It is worth noting that if the choice of ṽ does
not rely on z, then the two terms in Eq. (27) are decoupled.
This means that the gradient with respect to ṽ is independent
of the gradient with respect to z. Therefore, z and ṽ can be
optimized independently. In this case, our estimation of Z does
not affect the estimation of Y , and vice versa. One advantage
of this property is that even if z is actually far from the true
solution Z, it is still possible to have a good estimation of Y
that is fairly accuracy. As an application, we could fix z ≡ 0
and focus solely on estimating of Y by optimizing only ṽ.
According to our analysis, this simply results in the distance
between z and Z remaining constant, and we may still be able
to obtain a reasonable estimation of Y if the general BML
criterion reaches its minimum.

By choosing ν = δt and ṽ(s, ω) ≡ y0, we recover the
popular Deep BSDE method proposed in [24]. There, δt is the
Dirac measure centered at t and y0 ∈ R does not change along
with time s and the sample event ω. The general BML criterion
is then reduced to E |Ỹt − y0|2, which can be interpreted as

E
∣∣∣∣ξ − (

y0 −
∫ T

t

fs ds+

∫ T

t

⟨zs, dWs⟩
)∣∣∣∣2

= E
∫ T

t

∥zs − Zs∥2 ds+ E |Yt − y0|2
(28)

by Theorem 6. The original motivation of Deep BSDE method
is to examine the process

Ỹ z,y0
s = y0 −

∫ s

t

fτ dτ ,+

∫ s

t

⟨zτ , dWτ ⟩.

In fact, this is a forward stochastic differential equation. One
can relate it to BSDE (24) by requiring Y z,y0

T = ξ holds
almost surely, i.e., forcing E |ξ − Y z,y0

T |2 = 0. This is exactly
the criterion used in Deep BSDE method. If the choices of
y0 and z do not depend on each other, Remark V.3 reveals
that this criterion is equivalent to E |Yt − y0|2 when one is
only interested in estimating the value of Yt. We should also
mention that Deep BSDE method applies for a wider class
of BSDEs other than the simple form Eq. (24). There, the
generator fs is coupled with (Ys, Zs) by a nonlinear function
f . In that case, Eq. (25) and Eq. (27) are no longer valid. We
will briefly discuss that topic at the end of this section.

By choosing ν(ds) = ds and z ≡ 0, we recover the
martingale approach proposed in [22]. The general BML
criterion is then reduced to

E
∫ T

t

∣∣∣∣(ξ + ∫ T

t

fτ dτ

)
−

(
ṽs +

∫ s

t

fτ dτ

)∣∣∣∣2 ds
= E

∫ T

t

∫ T

s

∥Zτ∥2 dτ ds+ E
∫ T

t

|Ys − ṽs|2 ds

by Theorem 6. In the martingale approach, one takes no care
of the Z part of solution and just set the trial solution z
to zero. This treatment is permitted by Remark V.3 as well.
Minimizing the distance between Ỹ z and ṽ with z ≡ 0 is
indeed equivalent to minimizing the distance between ṽ and
the true solution Y . The similar result is reported along with
the martingale approach in [22], but there is no discussion
about its connection to Deep BSDE method.

Corollary 3. Let the condition of Theorem 5 hold and use the
same notation. For any y0 ∈ R and z ∈ H2, let Ŷ z,y0

s denote
the process

Ŷ z,y0
s = y0 −

∫ s

t

fτ dτ +

∫ s

t

⟨zτ , dWτ ⟩, ∀s ∈ [t, T ].

Then, it holds that

min
y0∈R

E |Ŷ z,y0

T − ξ|2 = E |Ỹ z
0 − E Ỹ z

0 |2.

Proof: This is a direct consequence of Theorem 5 and
Eq. (28).

Remark V.4. In general, the criterion E |Ŷ z,y0
s − ξ|2, used

in Deep BSDE method, depends on both z and y0. If y0 is
optimized with fixed z, it comes to the special BML criterion.

C. Optimize with the proposed criterion

In this subsection, we illustrate how to solve a BSDE by
optimizing the proposed criterion. As discussed at the end
of the last subsection, the general BML criterion is a class
of objective functions and choosing different (ν, ṽ, z) leads
to different specific objective functions. We summarize four
sets of (v, ṽ, z) in Table I and refer to them as Set (a)–
(d). It should be noted that Set (a) and Set (c) are used in
Deep BSDE method and the martingale approach, respectively.
Set (b) corresponds to the special BML criterion proposed
in Theorem 5, while Set (d) is considered here to show
the general form helps us finding new objective functions. It
should be pointed out that ṽs = E[Ỹ z

s | Fs]in Set (b) is merely
provided for completeness, and is not required for calculations.
We stress that these four sets cover only a small part of the
general BML criterion, and it is always possible to design
appropriate forms of ν, ṽ and z based on specific requirements.
In order to focus on ideas, we test these four criteria on
the following toy example. A more involved example will be
discussed in the next section.

Example 1. Solve the BSDE (24) with t = 0, T = 1, f(s, ω) ≡
−1, ξ = ⟨WT ,WT ⟩/n, where n is the dimension of the
Brownian motion and is set to 100.
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TABLE I
FOUR SPECIAL CASES OF THE GENERAL BML CRITERION.

Name dν/ds ṽ z Practical objective function

Set (a) δt y0 zs E |Ỹ z
0 − y0|2

Set (b) δt E[Ỹ z
s | Fs] zs E |Ỹ z

0 − E Ỹ z
0 |2

Set (c) 1 ṽs 0 E
∫ T
t |Ỹ 0

s − ṽs|2 ds
Set (d) 1 ṽs zs E

∫ T
t |Ỹ z

s − ṽs|2 ds
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Fig. 2. The absolute errors of θy, θz, y0 at each gradient steps for
Example 1. From left to right and from top to bottom, the subplots
correspond to Set (a), (b), (c) and (d). The solid lines and shaded areas
indicate the mean and standard deviation of absolute errors for 10 runs.

We parameterize the trial processes in Table I as ṽs =
W ⊺

s θyWs, zs = 2θzWs. Additionally, Set (a) involves op-
timizing a standalone variable y0. The Brownian motion
is simulated with time step ∆t = 0.01. The expectation
is estimated via Monte Carlo simulation with sample size
M = 16. Integration is approximated with the Euler method.
Optimization method is chosen as the standard stochastic
gradient descent (SGD) method with different learning rates:
1.0 × 10−1 for y0, 1.0 × 10−3 for θz and 1.0 × 10−5 for
θy . The initial values of y0, θy, θz are set to 1.0,−1.0,−1.0,
respectively. For each set, we perform 200 gradient steps and
repeat the whole procedure 10 times with different random
seeds. The true value of these variables are obtained via
theoretical analysis. It can be verified by Itô’s formula that
Ys = ⟨Ws,Ws⟩/n, Zs = 2Ws/n is a pair of adapted solution.
This solution is also unique because ξ ∈ L2

FT
and f ∈ H2.

Thus, the optimal values are θ∗y = θ∗z = 1/n. Additionally, the
y0 in Set (a) is used to estimate the value of Y0, and thus, has
the optimal value y∗0 = 0. Results are reported in Figure 2.

Figure 2 plots the absolute errors of θy, θz, y0 at each
gradient steps in four subplots, corresponding to the four sets
in Table I. It can be seen that all variables in these sets
converge to their true values with fairly high accuracy in
200 gradient steps. There are two interesting phenomena of
convergence trends. The first one is that θz converges very
quickly in Set (a) and Set (b) with almost the same rate, but

is slightly slower in Set (d). The second one is that the θy in
Set (d) converges to a better value than that in Set (c). We can
explain them with the help Theorem 6.

According to Eq. (27), the objective functions in these
four sets can be interpreted as follows. Set (a) minimizes
E
∫ T

t
∥zs − Zs∥2 ds, which also is the term to be minimized

in Set (b) plus an additional term E |y0 − Y0|2. Therefore,
the gradients for θz computed in Set (a) and Set (b) should
be identical except for the noise introduced by Monte Carlo
sampling. This is the reason why the convergent behavior of θz
is similar in these two sets. On the other hand, the θz in Set (d)
appears in a double integration E

∫ T

t

∫ T

s
∥zτ−Zτ∥2 dτ ds due

to the choice of ν. In order to explain the second phenomena,
we need to review the proof of Theorem 6. There, the cross-
term is eliminated by taking expectation. However, in practice,
this term does not vanish if we use Monte Carlo estimation.
A simple analysis shows that its variance is proportional to
|Ys − ṽs|2, which is also minimized in Set (d), but not in Set
(c). Therefore, a slight performance improvement in Set (d)
compared to Set (c) is expected.

In addition, Theorem 6 gives us the hint of choosing better
learning rates. Take y0 as an example at first. In Set (a), y0
appears in the term E |y0 − Y0|2. In optimization theory, the
optimal learning rate for quadratic function a∥x − x∗∥2 is
1
2a ; see, for example, Nesterov et al [37]. Thus, the optimal
learning rate for y0 is 0.5. Considering the noise effect, we
select a much smaller and thus safer value 0.1. For θy , the
analysis becomes a little more complicated. Eq. (27) tells
us that θy appears in the term E

∫ T

t
|Ys − ṽs|2 ds. Substi-

tuting Ys = θ∗y∥Ws∥2 and ṽs = θy∥Ws∥2 into it yields
(θy − θ∗y)

∫ T

t
E ∥Ws∥4 ds. By integrating on a sphere, we can

calculate that
∫ T

t
E ∥Ws∥4 ds = n(n + 2)(T − t)3/3. Thus,

the optimal learning rate for θy is in the order of 10−4. Based
on this, we select the value 1× 10−5.

D. Other type of BSDEs

The BSDE (24) considered before is only a basic type
of general BSDEs. In many applications, for example in
our off-policy subroutine, the generator f may be unknown
and is expressed as f(s, Ys, Zs) with a deterministic (or
even random) coefficient f(·, ·, ·). Elementary extensions of
Theorem 5 and Theorem 6 in this line are provided below.

Consider the following BSDE

Ys = ξ+

∫ T

s

f(τ, Zτ ) dτ−
∫ T

s

⟨Zτ , dWτ ⟩, ∀s ∈ [t, T ], (29)

where the generator f is only coupled with Z. For any
z ∈ H2, we can still introduce the process Ỹ z by replacing
Z with z. Sadly, Eq. (26) fails to hold because f(s, zs)
may be not equal to f(s, Zs). As a result, Theorem 5 and
Theorem 6 no longer hold. Nevertheless, The general BML
criterion for trial solutions (ṽ, z) can still be calculated and
optimized, and obviously the true (Y,Z) is a global minimum
of this criterion. Thus, the proposed criterion equals zero is a
necessary condition for solving such a BSDE. Moreover, we
are able to say it is also a sufficient condition to some extent.
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Proposition 7. Suppose that ξ ∈ L2
FT

and f : Ω × [t, T ] ×
Rd → R satisfies the following conditions: 1) for any z ∈ Rd,
f(s, z) is adapted; 2) f(s, 0) ∈ H2; 3) there exists a constant
L such that for any z1, z2 ∈ Rd,

|f(s, z1)− f(s, z2)| ≤ L|z1 − z2|, ds⊗ dP-a.e.

on [t, T ] × Ω. Then, BSDE (29) admits a unique adapted
solution (Y, Z) ∈ S2 ×H2. For any adapted process z ∈ H2,
let Ỹ z

s denote the process (not necessarily adapted)

Ỹ z
s = ξ +

∫ T

s

f(τ, zτ ) dτ −
∫ T

s

⟨zτ , dWτ ⟩, ∀s ∈ [t, T ].

Then, E
∫ T

t
∥Zs − zs∥2 ds equals zero if and only if E |Ỹ z

t −
E Ỹ z

t |2 equals zero.

Proof: The uniqueness and existence are standard results
for BSDEs; see [36, Chapter 6] for example.

Let E
∫ T

t
∥Zs−zs∥2 ds = 0 be true. Noting the assumptions

on f , for any s ∈ [t, T ], we have

E
[∫ T

s

f(τ, Zτ ) dτ −
∫ T

s

f(τ, zτ ) dτ

]2
≤ (T − s)E

∫ T

s

|f(τ, Zτ )− f(τ, zτ )|2 dτ

≤ L2(T − s)E
∫ T

s

∥Zτ − zτ∥2 dτ = 0.

Furthermore, according to Itô’s isometry, there is

E
[∫ T

s

⟨Zτ , dWτ ⟩−
∫ T

s

⟨zτ , dWτ ⟩
]2

= E
∫ T

s

∥Zτ−zτ∥2 = 0.

Hence, Ỹ z
s = Ys holds almost surely for any s ∈ [t, T ]. In

particular, E |Ỹ z
t − E Ỹ z

t |2 = E |Yt − EYt|2 = 0. This proves
the “only if” part.

In order to prove the “if” part, we consider the BSDE

Ŷs = ξ +

∫ T

s

f̂τ dτ −
∫ T

s

⟨Ẑτ , dWτ ⟩, ∀s ∈ [t, T ], (30)

where f̂τ := f(τ, zτ ). This is the type of BSDE studied in
previous subsections. By assumptions on f , the process f̂ ∈
H2. Applying Theorem 5 to BSDE (30) concludes that the
solution (Ŷ , Ẑ) ∈ S2 ×H2 uniquely exists and

E
∫ T

t

∥Ẑs − zs∥2 ds = E |Ỹ z
t − E Ỹ z

t |2 = 0.

Theorefore, zs = Ẑs holds ds⊗ dP almost everywhere.
In view of BSDE (29) and BSDE (30), we denote

Y := Y − Ŷ , Z := Z − Ẑ, f̄s := f(s, Zs)− f̂s.

Let γ be a positive constant such that γ > 2L2. By applying
Itô’s formula to eγs|Y s|2, we obtain

E eγt|Y t|2 + E
∫ T

t

eγs(γ|Y s|2 + ∥Zs∥2) ds

= 2E
∫ T

t

eγsY sf̄s ds− 2E
∫ T

t

eγsY s⟨Zs, dWs⟩.
(31)

A standard analysis based on Burkholder-Davis-Gundy in-
equality shows that the second term vanishs; see the proof
of [36, Theorem 6.2.1]. On the other hand, for any s ∈ [t, T ],

2Y sf̄s ≤ γ|Y s|2 +
1

γ
|f̄s|2 ≤ γ|Y s|2 +

L2

γ
∥Zs − zs∥2. (32)

Noting L2/γ < 1/2, Eq. (31) and Eq. (32), there is

E
∫ T

t

eγs∥Zs − Ẑs∥2 ds ≤
1

2
E
∫ T

t

eγs∥Zs − zs∥2 ds

=
1

2
E
∫ T

t

eγs∥Zs − Ẑs∥2 ds.

The last equality comes from the fact that zs = Ẑs holds
ds⊗dP almost everywhere. Hence, E

∫ T

t
eγs∥Zs− Ẑs∥2 ds =

0. Replacing Ẑs with zs again finishes our proof.

Remark V.5. When the linear BSDE (24) generalizes to
the nonlinear BSDE (29), the equality E |Ỹ z

t − E Ỹ z
t |2 =

E
∫ T

t
∥Zs−zs∥2 may be not true. But, we can still say that the

left-hand side is zero if and only if the right-hand side is zero.
Thus, we believe that minimizing the special BML criterion
is still a reasonable choice for solving the Z part of BSDEs.

Remark V.6. Under Assumptions 1, the BSDE in the off-policy
subroutine satisfies the conditions here.

Proposition 8. Let the condition of Proposition 7 hold and
use the same notation. Let ṽs be an adapted process in S2
and ν be a σ-finite measure on [t, T ]. Then,

E
∫ T

s

∥Zτ−zτ∥2 dτ = E |Ys−ṽs|2 = 0, ν-a.e., ∀s ∈ [t, T ]

if and only if E
∫ T

t
|Ỹ z

s − ṽs|2 ν(ds) = 0.

Proof: The sketch of this proof is similar to that of
Proposition 7 except for a few minor differences concerning
the additional ṽ and ν. A brief description of it is provided
below, and readers may refer to Proposition 7’s proof for more
explanations.

We prove the “only if” part at first. By the assumption on f ,
we are able to show that Ỹ z

s = Ys holds dν × dP-a.e.. Hence,

E
∫ T

t

|Ỹ z
s −ṽs|2 ν(ds) ≤ 2E

∫ T

t

|Ỹ z
s −Ys|2+|Ys−ṽs|2 ν(ds),

which equals zero by assumptions.
Then we prove the “if” part. Consider BSDE (30) with

f̂τ := f(τ, zτ ). Applying Theorem 6 to that BSDE, we
conclude that the solution (Ŷ , Ẑ) ∈ S2 × H2 uniquely exists
and that for any s ∈ [t, T ],

E
∫ T

s

∥Ẑτ − zτ∥2 dτ = E |Ŷs − ṽs|2 = 0, ν-a.e.. (33)

Moreover, in view of BSDE (29) and BSDE (30), we have

E e4L
2s|Ys − Ŷs|2 + E

∫ T

s

e4L
2τ∥Zτ − Ẑτ∥2 dτ

≤ 1

4
E
∫ T

s

e4L
2τ∥Zτ − zτ∥2 dτ.
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Integrating on ([t, T ], ν) and noting Eq. (33) yield

E
∫ T

t

∫ T

s

e4L
2τ∥Zτ − Ẑτ∥2 dτ ν(ds)

≤ 1

2
E
∫ T

t

∫ T

s

e4L
2τ∥Zτ − Ẑτ∥2 dτ ν(ds).

Hence, for any s ∈ [t, T ],

E
∫ T

s

e4L
2τ∥Ẑτ−Zτ∥2 dτ = E e4L

2s|Ŷs−Ys|2 = 0, ν-a.e..

Using Eq. (33) again finishes our proof.
Remark V.7. This extends Theorem 6 as Proposition 7 extends
Theorem 5. For nonlinear BSDEs, the (general) BML criterion
reaches zero can be interpreted as a necessary and sufficient
condition of finding solutions.

The BSDE encountered in the off-policy subroutine is a
special case of the BSDE considered in this subsection, where
the generator f(s, Z) is linear to Z. While Proposition 7
and Proposition 8 provide general treatments for nonlinear
generator, a generator linearly coupled in Z can also be
transformed into a decoupled generator by absorbing the linear
coupling term into the Brownian motion using Girsanov’s
transformation. However, this treatment involves a change of
probability measure [38] and is left for future discussion.

In order to verify our theory, we test the four realizations of
the propsed general criterion listed in Table I by the following
example, which is modified based on Example 1.

Example 2. Solve the BSDE (29) with t = 0, T =
1, f(ω, s, z) = −1 + ⟨b0Xs, Zs⟩, ξ = ⟨XT , XT ⟩/n, where
n = 100 is the dimension of the process X and Brownian
motion W . The process X satisfies the stochastic differential
equation: Xs = Ws −

∫ s

t
b0Xs ds with b0 = −0.1.

We parameterize the trial processes as ṽs = X⊺
s θyXs, zs =

2θzXs. Other treatments remain unchanged from Example 1.
The true values can be verified by Itô’s formula as well: θ∗y =
θ∗z = 1/n. Results are reported in Figure 3.

VI. SIMULATION RESULTS

In this section, we test our on-policy and off-policy subrou-
tines on a 100 dimensional optimal control problem. We obtain
the z function in these subroutines via optimizing the general
BML criterion discussed in the last section. Specifically, we
consider the four cases listed in Table I.

Example 3. Consider the following stochastic optimal control
problem, which is an extension of the example in [39]:

minimize E
[
log

1 + ∥XT ∥2
2

+

∫ T

t

∥αs∥2 ds
]
,

subject to Xs = x+

∫ s

t

σ0(b̂0ατ dτ + dWτ ), s ∈ [t, T ],

where W is a standard 100 dimensional Brownian motion with
Wt = 0, and σ0, b̂0 ∈ R are positive constants. Determine the
optimal cost when x = 0, t = 0, T = 1, b̂0 = 1 and σ0 =

√
2.

We run the GPI equipped with Algorithm 2 and Algo-
rithm 3. The initial policy is chosen to be α0(t, x) = −0.1x
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Fig. 3. The absolute errors of θy, θz, y0 at each gradient steps for
Example 2. From left to right and from top to bottom, the subplots
correspond to Set (a), (b), (c) and (d). The solid lines and shaded areas
indicate the mean and standard deviation of absolute errors for 10 runs.

and the behavior policy αb is fixed to α0. In order to satisfy
Assumption 1.2, we manually clip the components of control
inputs to [−amax, amax], which corresponds to the control set
A = [−amax, amax]

100 ⊂ R100. In our experiments, amax

is set to 100. To simulate the forward process, we adopt
the Euler-Maruyama method with time step size ∆t = 0.01
[40]. We optimize the proposed criterion on PyTorch platform
[41]. Table I is implemented with ṽs = ṽ(s,Xs; θy) and
zs = z(s,Xs; θz), where functions ṽ and z are feed-forward
neural networks with a single hidden layer. The width of
hidden layers is set to 16. We use the SGD optimizer with
Nesterov acceleration technique and momentum 1×10−3 [42].
The optimization procedure is terminated after 75 gradient
steps, and in each gradient step, the standard Euclidean norm
of the total gradient is clipped to 10, and the learning rates
are multiplied by a factor 0.99. Learning rates for y0, θy, θz
are 0.5, 0.1, 0.1, respectively. The sample size for estimating
expectations is 16. For each criterion, we call the on-policy
subroutine or the off-policy subroutine 9 consecutive times
starting at α0. Results are reported in Figure 4.

Figure 4 plots the absolute error between the theoretical
optimal cost and i-th policy’s cost. The theoretical optimal
cost is obtained by solving the associated HJB equation∂tv

∗ +
1

2
σ2
0

100∑
i=1

∂xixiv
∗ − 1

4
σ2
0 b̂

2
0

100∑
i=1

|∂xiv
∗|2 = 0,

v∗(T, x) = log(1 + ∥x∥2)/2.
Applying Hopf-Cole transformation to this equation yields the
following representation of the solution [43]

v∗(t, x) = − 2

b̂20
logE

[
exp

(
− b̂20

2
log

1 + ∥x+ σ0ϵ∥2
2

)]
,

where ϵ ∈ R100 and is normally distributed with mean 0 and
covariance matrix (T − t)I . We estimate this expectation by
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Fig. 4. The absolute error between the optimal cost and i-th policy’s
cost for Example 3. From left to right and from top to bottom, the
subplots correspond to Set (a), (b), (c) and (d). Each subplot, except
for Set (c), contains two lines representing the on-policy and the off-
policy subroutines. The data points and error bars represent mean and
standard deviation of 5 independent runs.

Monte Carlo with sample size M = 12800. Figure 4 shows
that both the on-policy and off-policy subroutines and the four
specific criteria can produce a good enough policy after 9
policy iteration steps. It is worth noting that there is no suitable
off-policy method for the criterion of Set (c). This is due to the
fact that the generator of the BSDE in Algorithm 3 is explicitly
coupled with Z, and thus, the optimization of z and ṽ is not
independent, cf. Remark V.3. Despite of this, we construct the
improved policy by setting zα = σ0∂xṽ(·, ·; θy) in the on-
policy subroutine for Set (c).

Example 4. Determine the optimal cost of Example 3 with
σ0 = 20.

Compared with the previous example, this only changes
the system dynamics. Benefited from the data-driven nature
of our algorithms, we can rerun the program with the only
difference that trajectories are now sampled from this new
system. Results are reported in Figure 5.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we build a probabilistic framework of
Howard’s policy iteration. Both an on-policy and an off-
policy FBSDE-based GPI subroutines are proposed, and the
convergence results associated with them are provided as well.
In order to solve the proposed FBSDE-constrained optimiza-
tion problem, we propose to minimize the BML criterion,
which extends the Deep BSDE method in [24] and martingale
approach [22]. Future directions may include considering
quadratic growth cost, relaxing the bounded control coupling
term assumption and analyzing stability issues and so on.
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